Friday, February 16, 2018

Neutron lifetime puzzle deepens, but no dark matter seen

Two ways to measure neutron lifetimes, Quanta illustration.

The discrepancy between the “bottle” and “beam” measurements has persisted since both methods of gauging the neutron’s longevity began yielding results in the 1990s. At first, all the measurements were so imprecise that nobody worried. Gradually, though, both methods have improved, and still they disagree.

Now, researchers at Los Alamos National Laboratory in New Mexico have made the most precise bottle measurement of the neutron lifetime yet, using a new type of bottle that eliminates possible sources of error in earlier designs. The result, which will soon appear in the journal Science, reinforces the discrepancy with beam experiments and increases the chance that it reflects new physics rather than mere experimental error. (Full story)

Novel exciton interactions in carbon nanotubes


Stephen Doorn performs spectroscopic
characterization of carbon nanotubes. LANL photo.

Nanotechnology researchers studying small bundles of carbon nanotubes have discovered an optical signature showing excitons bound to a single nanotube are accompanied by excitons tunneling across closely interacting nanotubes. That quantum tunneling action could impact energy distribution in carbon nanotube networks, with implications for light-emitting films and light harvesting applications.

"Observing this behavior in carbon nanotubes suggests there is potential to detect and control a similar response in more complex, multi-layered semiconductor and semiconductor-metal heterostructures,” said Stephen Doorn, of the Center for Integrated Nanotechnologies at Los Alamos and a coauthor of the study, recently published in Nature Communications. (Full story)

Augmented reality combines worlds to make the real world safer

Augmented reality goggles project holograms
onto the existing environment to help solve
infrastructure challenges, LANL image.

Los Alamos National Laboratory is investigating the technology’s applications and writing software in support of the Laboratory’s national security mission, such as tracking inventories or giving workers instructions for using equipment on the job and in real time. Other new uses of augmented reality technology being developed at Los Alamos may save time, money, and even lives by improving procedures for structural-health monitoring. (Full story)

Friday, February 9, 2018

Only a weapons lab can find a weapons lab

Author Nancy Jo Nicholas, Principal Associate Director of Global Security at Los Alamos National Laboratory.

Decades ago, after developing the first atomic bomb, Los Alamos National Laboratory developed and implemented scrupulous material control and accounting for its own nuclear material. That research led to inventing a wide range of satellite-borne and Earth-based instruments; many of the latter are used by the International Atomic Energy Agency to monitor nuclear activity. Instruments in space detect X-rays, gamma rays, and neutrons – all signatures of a nuclear explosion – anywhere on the globe, including hyper-secretive North Korea. Scientists tease out those signatures from the data “noise.” (Full Story)

Early quantum computing investors see benefits

The first systems stringing together tens of quantum bits are being made available for researchers to use, from the Financial Times.

Quantum computing will potentially mark one of the tech world’s biggest revolutions, harnessing the quirks of quantum mechanics to speed up machine computation exponentially.  

John Sarrao, associate director for theory, simulation, and computation at the Los Alamos National Laboratory, is among the scientists looking at how to invest in the technology.

The organisation is taking a long-term view of quantum computing from a national security point of view. However, according to Mr Sarrao, there are also benefits to be gained in the shorter term. (Full Story)

How quantum dots supercharge farming, medicine and solar, too

Quantum dots fluoresce under UV light, from LANL video.

Researchers from places like the Los Alamos National Laboratory and University College London, companies like Solterra and UbiQD, and many others are using quantum dots to help improve the efficiency of solar power.

Though it's not quite as simple as "TV, but backwards" it's possible to create a solar cell that uses quantum dots. So instead of taking electricity and creating light, like they do on a TV, they take light and create electricity. Although still very early in development, researchers expect to get quantum dot-based solar cells to be at least as efficient, and likely more so, than a traditional solar cell. (Full Story)

Taking solar energy to the edge

Layered perovskite, LANL image.    

At CINT researchers discovered an efficient way to make combined solar panels and light-emitting devices. Rather than using blocks of hybrid perovskite materials, they layered several thin sheets on top of each other.

Hybrid perovskites are a new class of low-cost materials that can capture and emit light. This material can be synthesized in several forms: bulk 3-D structures, 2-D crystal sheets, and 1-D rods. In particular, layered compounds can be created by stacking 2-D crystal sheets with thin organic layers in between. (Full Story)

4 nontraditional Taos students receive LANL scholarships

Sixteen Northern New Mexico adult students returning to college, including four from Taos, each received $1,000 scholarships from the Los Alamos National Laboratory Foundation. The awards from the Los Alamos Employees' Scholarship Fund help local, nontraditional students enter higher education programs to expand job opportunities or pursue new careers. (Full Story)

Photos: Rensselaer Polytechnic Institute Career Fair

Los Alamos National Lab's Chris Werner, left, speaks with RPI student Daniel Petti, RPI Photo.

Rensselaer Polytechnic Institute Center for Career and Professional Development hosted its Spring Career Fair on Wednesday. The fair is designed to help students support their search for full-time, co-op, internship, or summer employment opportunities.

From renewable energy to cybersecurity, from biotechnology to materials science, from big data to nanotechnology, the world needs problem solvers—exactly the kind of talent Rensselaer produces—to address the urgent issues of today and the emerging issues of tomorrow. (Full Story)

To subscribe to Los Alamos Press Highlights, please e-mail and include the words subscribe PressHighlights in the body of your email message; to unsubscribe, include unsubscribe PressHighlights.

Please visit us at

Friday, February 2, 2018

Missing neutrons may lead a secret life as dark matter

SciAm illustration.

If neutrons are turning into dark matter, the process could also produce gamma-ray photons, according to Fornal and Grinstein’s calculations. “We have some germanium gamma-ray detectors lying around,” says Christopher Morris, who runs neutron experiments at Los Alamos National Laboratory.

By serendipity, he and his team just recently installed a large tank to collect neutrons on their way from the start of the experiment to the point where physicists try to measure their lifetimes. This tank provided a large holding cell where many neutrons might decay into dark particles, if the process in fact occurs, and produce gamma-rays as a by-product. (Full story)

Novel computational biology model accurately describes dynamics of gene expression

Yen Ting Lin, LANL photo.

Using a simple analytical framework for random events within a predictable system, computational biologists have found a new way to accurately model certain forms of gene expression, including the body's 24-hour internal clock.

"In this study, we develop a simplifying method to reduce a class of commonly adopted gene expression models to a mathematical model, the PDMP, because it is easier to analyze and simulate than previous models," said Yen Ting Lin, corresponding author of the study and an applied mathematician in the Theoretical Division and Center for Nonlinear Studies at Los Alamos National Laboratory. (Full story)

Los Alamos scientists conduct study to help predict diseases

Harshini Mukundan speaks to a local
volunteer, from the Monitor.

Los Alamos National Laboratory, the Department of Homeland Security’s Science and Technology Directorate and the Medical Associates of Northern New Mexico are looking for volunteers in Los Alamos County to participate in a respiratory pathogen study and provide information and swab samples.

“The goal of this study is to develop a system that can predict future emergence of infections, propose the best public health solutions to prevent spread of diseases and provide suitable treatment for infections,” said Harshini Mukundan, of Los Alamos’ Physical Chemistry and Applied Spectroscopy group. (Full story)

New technique paves the way for better 2-D catalysts

Multilayered Molybdenum Disulfide,
from Carnegie/DOE.

As part of the research, scientists Jun Lou and colleagues at Los Alamos National Laboratory developed a technique that allowed them to peer through windows created by an electron beam in order to measure the catalytic activity of molybdenum disulfide – the 2-D material that shows potential for being used in applications using electrocatalysis to separate hydrogen from water.

Results from the initial tests proved that the sheet’s edge is where most of the production is coming from. “We’re using this new technology to identify the active sites that have been long-predicted by theory,” said Lou. “There was some indirect proof that the edge sites are always more active than the basal planes, but now we have direct proof.” (Full story)

Friday, January 26, 2018

NASA pushes for nuclear-powered space missions

Kilopower prototype, NASA image.

In the past, NASA has used radioisotope thermoelectric generators (RTGs) to power spacecraft like Voyagers 1 and 2, the Apollo Lunar Surface Experiments Packages, and the Curiosity rover. However, it is not terribly efficient.

Nuclear reactors can take advantage of active nuclear fission, or atom splitting, to be far more efficient, and NASA has been researching this technology for decades.

The United States flew its first space reactor, SNAP-10A, in 1965. However, from the late 1970s through the early 2000s, space reactor development has been largely unsuccessful. "There hasn't been any tangible progress in fission reactor technology in decades," Dave Poston, chief reactor designer at Los Alamos National Laboratory in New Mexico, said during the conference. (Full Story)

NASA unveils new power source for space exploration

Kilopower deep space system, NASA illustration.

NASA's Glenn Research Center developed the kilowatt prototype in collaboration with the Los Alamos National Laboratory. Engineers deemed the project feasible in 2012 and have since been moving toward a full-scale demonstration. The uranium reactor core was supplied by the Y12 National Security Complex, and the entire prototype assembly was shipped to the Nevada National Security Site for early testing late last year. This will culminate with a 28-hour, full-power test in late March.

Kilopower would open up areas of the inner solar system to long-term exploration as well. On the Moon, for example, night is two weeks long. And on Mars, sandstorms periodically cover the solar panels used by rovers such as Spirit and Opportunity. For this reason, Curiosity uses a plutonium-powered MMRTG, as will the Mars 2020 rover. (Full Story)

Extensive National and International coverage includes:
Fortune, Reuters, Popular Mechanics, Discover, and many more!

Floating ultralight craft could deliver worldwide Internet

Miles Beaux works in a glovebox, where he is researching lighter-than-air solids, LANL photo.

More than half the people on Earth cannot access the Internet. According to a Facebook study, bringing internet to all could raise the world’s gross domestic product by $2.2 trillion, increase the GDP growth rate by 72 percent, and create more than 140 million new jobs worldwide.

A solution just might come from a new technology being developed at Los Alamos National Laboratory. Researchers at the lab are closer than ever to creating an “air-buoyant solid” – a material that floats without helium gas, hot air, or some other buoyant filler – and with it the hope of building lighter-than-air craft that could deliver internet access to currently unserved, remote parts of the world. (Full Story)

Neutron anomaly might point to dark matter

UCNA experiment at Los Alamos National Laboratory, from Physics World.

To measure the average neutron lifetime precisely, physicists employ two basic techniques. One is to house neutrons within a container, known as a bottle, and simply count how many of them remain after a fixed interval of time. The other approach is to fire a neutron beam with a known intensity through an electromagnetic trap and measure how many protons emerge in a given time.

two collaborations at the Los Alamos National Laboratory in New Mexico – UCNA and UCNtau – are currently searching for the photon (gamma-ray) and electron–positron signals within data from neutron decays. “Data are in hand and analyses are under way," says UCNA team member Peter Geltenbort of the Institut Laue-Langevin in France. (Full Story)

Los Alamos has Viome!

Viome’s senior management team at their headquarters, Daily Post photo.

Viome, which stands for “Science of Life” (Vie in French means Life and Omics means Science), is a startup created with the help of Los Alamos National Laboratory. Housed in a 21,000 square-foot facility at 81 Camino Entrada, the biotech/artificial intelligence company analyzes your microbiome and metabolism to generate personalized dietary and nutritional recommendations.

Viome was founded with one simple premise: What if illness could be elective?

“We have come to realize that most of the genes in our body are microbial, not human,” said Viome’s Chief Science Officer Momo Vuyisich during an interview in his laboratory. (Full Story)

To subscribe to Los Alamos Press Highlights, please e-mail and include the words subscribe PressHighlights in the body of your email message; to unsubscribe, include unsubscribe PressHighlights.

Please visit us at